36 research outputs found

    Multiport Technology: The New Rise of an Old Concept

    Full text link

    Performance Driven Six-Port Receiver and Its Advantages over Low-IF Receiver Architecture

    No full text
    This paper provides an extensive analysis of the performance of a six-port based direct conversion receiver (SPR) in terms of signal quality, dynamic range, noise figure, ports matching, isolation, bandwidth, and cost. Calibration technique using multimemory polynomials has been adopted in order to improve the signal quality of the six-port receiver. The performances of the calibrated receiver are then compared with the performances of a commercially available I-Q demodulator used as a low-IF receiver. The main advantages and disadvantages of the SPR compared to the low-IF receiver are highlighted. The major advantages of the SPR come in terms of its available input frequency bandwidth and the low power requirement. The SPR system requires no external bias supply but suffers in terms of the available conversion gain. A better port matching of the SPR can be guaranteed over a wide frequency bandwidth, which mixer based receiver systems lack. The main component limiting the performance of a SPR is the diode detector. A faster and a better diode detector will alleviate some of the problems highlighted in this paper. The SPR system is calibratable and its error-vector-magnitude performance can be made better than the I-Q demodulator used as a low-IF receiver.Peer Reviewe

    Performance Driven Six-Port Receiver and Its Advantages over Low-IF Receiver Architecture

    Get PDF
    This paper provides an extensive analysis of the performance of a six-port based direct conversion receiver (SPR) in terms of signal quality, dynamic range, noise figure, ports matching, isolation, bandwidth, and cost. Calibration technique using multimemory polynomials has been adopted in order to improve the signal quality of the six-port receiver. The performances of the calibrated receiver are then compared with the performances of a commercially available I-Q demodulator used as a low-IF receiver. The main advantages and disadvantages of the SPR compared to the low-IF receiver are highlighted. The major advantages of the SPR come in terms of its available input frequency bandwidth and the low power requirement. The SPR system requires no external bias supply but suffers in terms of the available conversion gain. A better port matching of the SPR can be guaranteed over a wide frequency bandwidth, which mixer based receiver systems lack. The main component limiting the performance of a SPR is the diode detector. A faster and a better diode detector will alleviate some of the problems highlighted in this paper. The SPR system is calibratable and its error-vector-magnitude performance can be made better than the I-Q demodulator used as a low-IF receiver

    Forward Behavioral Modeling of a Three-Way Amplitude Modulator-Based Transmitter Using an Augmented Memory Polynomial

    No full text
    Reconfigurable and multi-standard RF front-ends for wireless communication and sensor networks have gained importance as building blocks for the Internet of Things. Simpler and highly-efficient transmitter architectures, which can transmit better quality signals with reduced impairments, are an important step in this direction. In this regard, mixer-less transmitter architecture, namely, the three-way amplitude modulator-based transmitter, avoids the use of imperfect mixers and frequency up-converters, and their resulting distortions, leading to an improved signal quality. In this work, an augmented memory polynomial-based model for the behavioral modeling of such mixer-less transmitter architecture is proposed. Extensive simulations and measurements have been carried out in order to validate the accuracy of the proposed modeling strategy. The performance of the proposed model is evaluated using normalized mean square error (NMSE) for long-term evolution (LTE) signals. NMSE for a LTE signal of 1.4 MHz bandwidth with 100,000 samples for digital combining and analog combining are recorded as −36.41 dB and −36.9 dB, respectively. Similarly, for a 5 MHz signal the proposed models achieves −31.93 dB and −32.08 dB NMSE using digital and analog combining, respectively. For further validation of the proposed model, amplitude-to-amplitude (AM-AM), amplitude-to-phase (AM-PM), and the spectral response of the modeled and measured data are plotted, reasonably meeting the desired modeling criteria

    Blind Compensation of I/Q Impairments in Wireless Transceivers

    No full text
    The majority of techniques that deal with the mitigation of in-phase and quadrature-phase (I/Q) imbalance at the transmitter (pre-compensation) require long training sequences, reducing the throughput of the system. These techniques also require a feedback path, which adds more complexity and cost to the transmitter architecture. Blind estimation techniques are attractive for avoiding the use of long training sequences. In this paper, we propose a blind frequency-independent I/Q imbalance compensation method based on the maximum likelihood (ML) estimation of the imbalance parameters of a transceiver. A closed-form joint probability density function (PDF) for the imbalanced I and Q signals is derived and validated. ML estimation is then used to estimate the imbalance parameters using the derived joint PDF of the output I and Q signals. Various figures of merit have been used to evaluate the efficacy of the proposed approach using extensive computer simulations and measurements. Additionally, the bit error rate curves show the effectiveness of the proposed method in the presence of the wireless channel and Additive White Gaussian Noise. Real-world experimental results show an image rejection of greater than 30 dB as compared to the uncompensated system. This method has also been found to be robust in the presence of practical system impairments, such as time and phase delay mismatches

    Behavioral modelling and predistortion of wideband wireless transmitters

    No full text
    Covers theoretical and practical aspects related to the behavioral modelling and predistortion of wireless transmitters and power amplifiers. It includes simulation software that enables the users to apply the theory presented in the book. In the first section, the reader is given the general background of nonlinear dynamic systems along with their behavioral modelling from all its aspects. In the second part, a comprehensive compilation of behavioral models formulations and structures is provided including memory polynomial based models, box oriented models such as Hammerstein-based and Wien
    corecore